Технологическая схема регулировки и ремонта радиоэлектронной аппаратуры кратко. Основные разделы справочника

Содержание
  1. Технология монтажа регулировка радиоэлектронной аппаратуры приборов
  2. Тема 10. 2 Регулировка радиоэлектронной аппаратуры и приборов
  3. Радиоэлектронная аппаратура и приборы
  4. Оглавление
  5. Электрорадиоэлементы
  6. Миниатюризация и микроминиатюризация радиоэлектронной аппаратуры
  7. Техническая документация
  8. Механизация и автоматизация технологических процессов сборки и монтажа радиоэлектронной аппаратуры и приборов
  9. Контроль, регулировка и испытания радиоэлектронной аппаратуры
  10. Производственная санитария, гигиена и охрана труда, электробезопасность и пожарная безопасность на предприятиях радиоэлектронной промышленности
  11. Надежность радиоэлектронной аппаратуры
  12. Пример технической карты регулировки
  13. Вау!! 😲 Ты еще не читал? Это зря!
  14. Обзор методов диагностики РЭА
  15. Поэлементные методы диагностики
  16. Метод последовательного функционального анализа
  17. Метод половинного деления схемы
  18. Метод «время-вероятность»
  19. Инженерный метод
  20. Метод на основе иерархического принципа
  21. 2 2. Метод внешних проявлений
  22. Метод измерений
  23. Метод исключения
  24. Пошаговый метод поиска неисправностей
  25. Метод замены
  26. Метод системного анализа
  27. Табличный метод

Технология монтажа регулировка радиоэлектронной аппаратуры приборов

Общие методы настройки и регулировки РЭА

Настройка и регулировка РЭА производится в такой последовательности: внешний осмотр сборки и монтажа аппаратуры, настройка и регулировка ее узлов и блоков и проверка электрических параметров аппаратуры.

При внешнем осмотре сборки и монтажа проверяют правильность установки деталей и сборочных единиц на шасси или печатной плате и их крепление, отсутствие замыканий проводов или печатных проводников на плате. Любые неисправности, обнаруженные при осмотре, должны быть устранены.

Настройку и регулировку электрических параметров узлов и блоков начинают с измерения напряжений и токов питания, иногда— сопротивлений цепи. Измеренные значения токов потребления и напряжений (сопротивлений) сравнивают с их значениями, приведенными на принципиальной электрической схеме и технологических картах.

Если показания измерительных приборов не отличаются резко от нормы, приступают к настройке и регулировке блока. При регулировке узлов и блоков РЭА в зависимости от технологического процесса применяют либо метод проверки параметров по измерительным приборам, или метод сравнения выходных параметров блока с эталоном.

При расхождении этих значений со значениями данными в ТУ изделия бракуют и отправляют в ремонт.

При регулировке и настройке РЭА с использованием интегральных микросхем и микросборок необходимо, чтобы измерительное оборудование не нарушало их электрических и тепловых режимов. Проверка электрических режимов микросхем и микросборок при монтаже или ремонте сводится к измерению постоянных или импульсных напряжений на их выводах в узлах или блоках.

Основные методы измерений электрических параметров устройств на микросхемах и микроблоках и определение их характеристик оговорены ГОСТ 18683—76 и ГОСТ 19799—74. При этом нельзя допускать произвольную замену номиналов резисторов на схемах блоков, так как режимы микросхем и микросборок могут выйти за пределы допустимых значений.

Существенное значение в работе СВЧ-аппаратуры приобретают потери электромагнитной энергии при передаче ее от источника

в нагрузку. Для уменьшения потерь энергии осуществляется согласование между отдельными узлами и блоками аппаратуры, входящими в тракт передачи энергии, с помощью согласующих устройств-преобразователей (аттенюаторов, ответвителей, фазовращателей, нагрузок и др.).

Волноводные, коаксиальные и полосковые тракты передачи энергии, а также входящие в их состав линейные элементы характеризуются полным сопротивлением, коэффициентом стоячей волны (КСВ), модулем, фазой коэффициента отражения н комплексным коэффициентом передачи. Измерения этих величин, а также мощности СВЧ-колебаний также имеют специфические особенности.

При настройке и регулировке узлов и блоков, работающих в СВЧ-диапазоне, необходимо согласовать элементы тракта СВЧ для передачи максимума энергии без отражений, обеспечить заданную стабильность работы генераторов и др. Для этого используют специальные измерительные приборы и устройства (волномеры, измерители мощности, измерительные линии, генераторы) и согласующие устройства — преобразователи.

В процессе регулировки необходимо следить за точностью и плотностью сочленения отдельных элементов (фланцев, разъемов и др.) СВЧ-тракта. Различные смещения, ухудшение контакта и другие неточности в соединении отдельных элементов приводят к большим потерям полезного сигнала.

Тема 10. 2 Регулировка радиоэлектронной аппаратуры и приборов

Регулировка радиоэлектронной аппаратуры осуществляется с целью доведения параметров изделий до значений, соответствующих требованиям технических условий, ГОСТов или образцам, принятым за эталон.

Основными задачами регулировки являются компенсация допустимых отклонений параметров элементов устройства, а также выявление ошибок монтажа и других неисправностей.

Регулировка производится двумя методами: по измерительным приборам и сравнением настраиваемого устройства с образцом, которое называется электрическим копированием.

Прежде чем приступить к выполнению регулировочных работ, необходимо изучить устройство, которое подлежит регулировке, ознакомиться с техническими условиями на него, с основными выходными и промежуточными значениями параметров, чертежами общего вида и электрическими схемами. Регулировщик должен знать, в каких условиях будет эксплуатироваться аппаратура и характеристики измерительной техники.

Правильная организация рабочего места регулировщика существенно влияет на сокращение трудовых затрат и повышает качество выполнения регулировочных работ. Для правильной организации технологического процесса регулировки необходимы соответствующая контрольно-измерительная аппаратура и инструмент. Точность применяемой измерительной аппаратуры должна превышать примерно в 3 раза заданную точность настройки. Регулировку аппаратуры осуществляют при помощи универсальных стандартных измерительных и специальных заводских приборов, которые представляют собой различного рода имитаторы, эквиваленты нагрузок, пульты управления. Специальные приборы для регулировочных работ, так называемые нестандартные приборы, имеют целью максимально уменьшить трудоемкости регулировки и сокращение подготовительно-заключительного времени. Поэтому они изготавливаются конкретно для каждого типа радиоэлектронного аппарата.

Особенностью оборудования рабочего места регулировщика является то, что сложность стандартной и нестандартной контрольно-измерительной аппаратуры зачастую превышает сложность регулируемого прибора.

В рабочее место регулировщика при единичном и мелкосерийном производствах входят верстак, стул, стеллаж.

Верстак должен быть удобным и обладать достаточной прочностью и устойчивостью, исключающей дрожание и смещение его во время работы. Верстаки должны устанавливаться на расстоянии, обеспечивающем естественные условия работы и отсутствие взаимного влияния приборов, установленных на них. При расположении в помещении большогоколичества измерительных приборов должны быть приняты меры для отвода от рабочих мест избыточного количества тепла и обеспечение нормальной температуры.

Состав рабочего места определяется сложностью и особенностями конструкции регулируемого прибора. Количество контрольно-измерительных приборов на рабочем месте должно быть минимально необходимым для обеспечения бесперебойной работы в течение смены. Аппаратура на рабочем месте должна быть размещена таким образом, чтобы было удобно пользоваться органами регулировки. Периодически употребляемые приборы должны находиться в поле зрения регулировщика на одном и том же месте.

Освещение рабочего места должно быть правильным и достаточным, требуемая освещенность определяется действующими санитарными нормами и характером выполняемой работы. При естественном и искусственном освещении рабочие места и источники света рекомендуется размещать так, чтобы свет падал слева или спереди. В случае местного освещения свет должен падать равномерно, он не должен слепить глаза, создавать блики на шкалах приборов, не затруднять наблюдение за световыми индикаторами; тень не должна падать на места и органы регулировки. Мерцающий свет недопустим, так как он утомителен для глаз, спектральный состав света должен соответствовать рекомендациям врачей и светотехников. При недостаточном общем освещении необходимо предусмотреть дополнительное местное освещение.

Минимальные размеры верстака 1200X900 мм, по высоте он должен быть рассчитан на регулировщика высокого роста. При работе стоя для регулировщика более низкого роста должны быть предусмотрены подставки соответствующей конструкции. Для работы сидя должны применяться стулья с вращающимся вокруг вертикальной оси сидением, высота которого регулируется при помощи винтового устройства.

Рабочее место должно удовлетворять требованиям техники электробезопасности. В частности, то место верстака, на котором производится регулировка, должно быть выполнено из электроизоляционного материала. К минимуму должна быть сведена вероятность касания регулировщиком заземленных частей верстака в процессе регулировки. При работе с аппаратурой, находящейся под высоким напряжением, на пол под верстак должен быть положен резиновый коврик. На рабочем месте должна быть предусмотрена возможность обесточивания аппаратуры. Корпуса измерительных приборов должны быть надежно заземлены проводами соответствующих марок и сечения. Заземляющие провода следует располагать таким образом, чтобы регулировщику был виден весь провод от корпуса прибора до места его заземления. Сетевые шланги приборов должны быть без оголенных участков провода и разлохмаченной изоляции и должны иметь вилки, предохраняющие регулировщика от поражения электрическим током при их вставлении или вынимании из розетки.

На Рис. 2.1 показана одна из возможных конструкций рабочего места. Конструкция сборно-разборная, состоит из типовых элементов. Угловая форма верстака и соответствующеерасположение приборов расширяют угол обзора до 180° и позволяют регулировщику работать в более удобной позе, чем при расположении приборов в линию. В левой тумбочке стола расположен блок питания с автоматическим регулятором напряжения, а в правой — ящики для хранения инструментов и деталей.

Рис. 2.1. Рабочее место регулировщика радиоэлектронной аппаратуры.

Наличие верхней полки, установленной на кронштейнах, дает возможность разместить на рабочем месте большее количество измерительных приборов.

Выбранная форма верстака позволяет рационально использовать производственные площади, при этом возможно расположение рабочих мест «крестами» по четыре или в линию.

Комплексное рабочее место регулировщика (Рис. 2.2) состоит из верстака-1, стеллажа-2 и стола-тележки 4. Из указанных элементов можно выполнить ряд различных компоновок рабочих мест регулировщика. Вариант компоновки подбирается в зависимости от габаритов регулируемого изделия, количества примененных измерительных приборов и общей планировки размещения рабочих мест.

Рис. 2.2. Компоновка рабочего места регулировщика из отдельных

Рабочий стол (1200X^50X1200 мм) имеет подвесную тумбу с четырьмя выдвижными ящиками и подвесной блок питания, которые взаимозаменяемы. В столе имеются две выдвижные полки, расположенные слева и справа под столешницей. Для дополнительного размещения измерительной аппаратуры на столе имеется откидная полка 3, укрепленная на вертикальных стойках.

В нерабочем положении на полке может крепиться рабочая документация.

Стол-тележка (750X300X780 мм), равный по высоте рабочему столу, позволяет при необходимости увеличить площадь рабочего стола и может быть использован для доставки и перемещения приборов и -аппаратуры.

Стеллаж предназначен для размещения приборов и устанавливается сзади или сбоку стола. Средняя полка стеллажа регулируемая и может быть установлена на высоте рабочего стола или в другом требуемом положении.

Рабочий стол и стеллаж имеют регулируемые опоры с резиновыми подпятниками. Все элементы выполнены с применением деталей системы универсально-сборных каркасных конструкций (УСКК) — прямоугольного трубчатого профиля и соединительных угольников. При необходимости каркасы рабочих элементов могут быть разобраны и использованы в других компоновках.

Смотрите также:   Зимние шины Liln Long

С.р.Тема1Испытания радиоэлектронной аппаратуры

(Г. В. Ярочкина. Радиоэлектронная аппаратура и приборы. Монтаж и регулировка, стр. 191-194)

Тема 2 Условия эксплуатации радиоэлектронной аппаратуры и приборов и влияние различных факторов на работоспособность радиоаппаратуры.

(Г. В. Ярочкина. Радиоэлектронная аппаратура и приборы. Монтаж и регулировка. Стр. 194-197)

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Радиоэлектронная аппаратура и приборы

Рассмотрены особенности монтажа современной радиоэлектронной аппаратуры, основные направления микроминиатюризации радиоаппаратуры, техническая документация, технология сборочных работ, основные виды испытаний радиоэлектронных устройств. Приведены электрические и конструктивные характеристики электрорадиокомпонентов, их маркировка. Изложены основные требования по охране труда, электробезопасности и пожарной безопасности на предприятиях электронной промышленности. Даны основные понятия качества и надежности радиоэлектронной аппаратуры и приборов.

Оглавление

Характерные особенности технологии производства радиоэлектронной аппаратуры и приборовПайкаПрипои и флюсыОсновные требования, предъявляемые к припоямОсновные требования, предъявляемые к флюсамПайка электромонтажных соединенийПодготовка проводов и кабелей к монтажуИзготовление и укладка жгутовЭлектрический монтаж соединений методом навивкиТонкопроводный монтаж печатных платВходной контроль и подготовка электрорадиоэлементов к монтажуКонструктивно-технологические требования, предъявляемые к электрическому монтажу

Электрорадиоэлементы

Классификация, основные параметры, обозначения и маркировка резисторовКлассификация резисторовОсновные параметры резисторовОбозначение резисторов на электрических схемахВиды соединения резисторовСистема условных обозначений и маркировка резисторовПеременные непроволочные резисторыРекомендации по применению резисторовКонденсаторыОсновные параметры конденсаторовУсловные обозначения конденсаторовСоединение конденсаторовХарактеристики конденсаторов различных типовТребования, предъявляемые к монтажу и креплению конденсаторовКатушки индуктивности и дросселиКлассификация катушек индуктивностиОсновные параметры катушек индуктивностиВиды катушек индуктивностиТрансформаторыПолупроводниковые приборыУсловные обозначения полупроводниковых диодовПравила монтажа и эксплуатации полупроводниковых приборовКлассификация и обозначение транзисторов, правила монтажа и эксплуатацииКоммутационные устройстваПереключателиРелеРазъемы

Миниатюризация и микроминиатюризация радиоэлектронной аппаратуры

Основные направления развития миниатюризации и микроминиатюризации радиоэлектронной аппаратуры и приборовУнифицированные функциональные модули и микромодулиИнтегральные микросхемыПленочные интегральные микросхемыГибридные интегральные микросхемыПолупроводниковые интегральные микросхемыСовмещенные интегральные микросхемы. Большие интегральные микросхемы (БИС)Молекулярные функциональные устройстваЗащитные материалы и методы герметизации микроэлементов, микромодулей и микросхемСборка и монтаж микросхемСборка и монтаж радиоаппаратуры на микросхемахУсловные обозначения интегральных схем

Техническая документация

Общие сведенияТехнологическая документация, применяемая при сборке РЭА и приборовРазличные типы схем, применяемых при производстве, ремонте и эксплуатации радиоэлектронной аппаратуры

Механизация и автоматизация технологических процессов сборки и монтажа радиоэлектронной аппаратуры и приборов

Основные понятияРоботизация технологических процессов сборки и монтажа радиоэлектронной аппаратурыПрименение гибких переналаживающих комплексов в монтажных операцияхМикропроцессорные системы управления технологическими процессами сборки и монтажаАвтоматизированное проектирование технологических процессов сборки узлов РЭА и приборов

Контроль, регулировка и испытания радиоэлектронной аппаратуры

Контроль качества и надежности монтажаНазначение регулировки и условия эксплуатации радиоэлектронной аппаратуры и приборовРегулировка радиоэлектронной аппаратуры и приборовОрганизация процесса регулировкиИспытания радиоэлектронной аппаратурыУсловия эксплуатации радиоэлектронной аппаратуры и приборов

Производственная санитария, гигиена и охрана труда, электробезопасность и пожарная безопасность на предприятиях радиоэлектронной промышленности

Общие санитарные требованияОсновные положения по охране труда на предприятиях радиоэлектронной промышленностиСпециальные требования по технике безопасности и производственной санитарии для работников предприятий радиоэлектронной промышленностиТребования безопасности труда на территории предприятий радиоэлектронной промышленностиЭлектробезопасностьПожарная безопасность на предприятиях радиоэлектронной промышленности

Надежность радиоэлектронной аппаратуры

Для учащихся учреждений начального профессионального образования, осваивающих профессии «Монтажник радиоэлектронной аппаратуры и приборов» и «Регулировщик радиоэлектронной аппаратуры и приборов». Может использоваться для профессиональной подготовки рабочих на производстве.

Привет, мой друг, тебе интересно узнать все про технологическая схема ремонта радиоэлектронной аппаратуры, тогда с вдохновением прочти до конца. Для того чтобы лучше понимать что такое
технологическая схема ремонта радиоэлектронной аппаратуры, технологическая схема ремонта, технологическая карта регулировки , настоятельно рекомендую прочитать все из категории Диагностика, обслуживание и ремонт электронной и радиоаппаратуры.

Схема РЭА, выполненная на любом уровне деления на элементы, отражает электрические и электромагнитные процессы, протекающие в исправном устройстве. Если в схеме учтены все взаимосвязи между элементами питания и преобразования сигналов, то она может служить как для изучения принципов действия РЭА, так и для поиска отказов, которые объединяются под общим названием «обрывы».

Под обрывом понимается всякое ухудшение или прекращение действия любого элемента, не приводящее к срабатыванию защитного устройства от перегрузок и не вызывающее изменений напряжений питания в схемах РЭА. Обрывом может быть физический разрыв цепи или любое препятствие прохождению сигналов.

При отказах типа «обрыв» задача поиска разрешается успешно, если найден элемент, на входах которого сигналы и питание имеются, а на выходе сигнала нет (или он сильно искажен либо изменился).

Отказы типа «перегрузка» возникают при появлении перегрузки или короткого замыкания в цепях элементов или в цепях подачи питания. При этом происходит срабатывание защитного устройства. Поэтому поисковая последовательность приводит к локализации сработавшего защитного устройства.

При коротком замыкании в элементе, получающем питание, резко уменьшается сопротивление цепи, в результате чего возникает шунтирование цепи питания, и ток в ней возрастает. Происходит срабатывание ближайшего устройства защиты.

При отыскании неисправностей в РИП можно использовать технологическую схему контроля и поиска неисправностей, приведенную на рис. 1.1

Вверху технологической схемы указывается внешнее проявление неисправности, например, “отсутствует луч на экране электронно-лучевой трубки (ЭЛТ) осциллографа”, “не перемещается луч по вертикали”, “нет синусоидального сигнала на выходе генератора низкой частоты” и т.д.

На первом этапе специалист, осуществляющий ремонт устройства, изучает принцип работы устройства по электрическим схемам: структурной, принципиальной и монтажной.

После изучения взаимосвязей между наиболее вероятными неисправными блоками (модулями) устройства, проводят визуальный осмотр подозреваемых неисправных блоков (модулей). В случае, если при визуальном осмотре были выявлены, например, обугленные резисторы, вздутые электролитические конденсаторы, механические повреждения керамических конденсаторов и другие дефекты, эти элементы заменяют на заведомо работоспособные. Если при визуальном осмотре не выявлено неработоспособных элементов, то специалистом, в зависимости от вида неисправности, производится выбор методов поиска неисправностей и составляется алгоритм их поиска.

Необходимо отметить, что если составленный и реализованный на практике алгоритм не позволил выявить неисправности в аппаратуре, то это говорит о том, что специалистом не достаточно полно

изучены принцип ее работы и методы поиска неисправностей в блоках (модулях) или в аппаратуре в целом.

На следующем этапе проводят построение таблицы функций неисправностей для радиоэлектронного устройства (РЭУ). Она представляет собой таблицу, в которой записаны значения статических (постоянных) и динамических (переменных) параметров (напряжений, токов и т.д.) в характерных контрольных точках схемы ремонтируемого устройства. Следует помнить, что постоянные напряжения определяют режим работы отдельных каскадов в схеме ремонтируемого блока (модуля). Более подробно методика разработки модели ремонтируемого устройства описана в разделе 1.3.

После составления модели в соответствии с выбранными методиками и алгоритмом выявляются и устраняются неисправности в РЭУ.

На следующем этапе работ проводят контроль работоспособности устройства и по его результатам, в случаях необходимости, осуществляют регулировку (комплексную регулировку).

Так как радиоизмерительные приборы применяются для измерений параметров (характеристик) различного рода радиоэлектронных устройств, то они в обязательном порядке должны после ремонта и регулировки пройти метрологическую поверку.

Ремонт блоков разверток, как правило, заключается в замене неисправных элементов. В табл. 1.6 приведена технологическая карта ремонта выходного каскада кадровой развертки на базе микросхемы TDA8350 (см . Об этом говорит сайт https://intellect.icu . рис. 1.39).

Технологическая карта ремонта выходного каскада кадровой развертки (замена микросхемы TDA8350)

каскада кадровой развертки на базе микросхемы TDA8350 (см. рис. 1.39).

Рис 1.39 Схема включения микросхемы TDA8350

Пример технической карты регулировки

Регулировка уровня топлива в поплавковой камере карбюратора

Установка уровня топлива в поплавковой камере карбюратора

1 — поплавок; 2 — крышка карбюратора; 3 — прокладка; 4 — калибр; 5 — игольчатый клапан

Вау!! 😲 Ты еще не читал? Это зря!

Понравилась статья про технологическая схема ремонта радиоэлектронной аппаратуры? Откомментируйте её Надеюсь, что теперь ты понял что такое технологическая схема ремонта радиоэлектронной аппаратуры, технологическая схема ремонта, технологическая карта регулировки
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Диагностика, обслуживание и ремонт электронной и радиоаппаратуры

Сразу хочу сказать, что здесь никакой воды про ремонт радиоэлектронной техники, и только нужная информация. Для того чтобы лучше понимать что такое
ремонт радиоэлектронной техники , настоятельно рекомендую прочитать все из категории Диагностика, обслуживание и ремонт электронной и радиоаппаратуры.

Общие вопросы ремонта. Технологическая схема ремонта радиоэлектронной аппаратуры. Описание моделей объектов ремонта. Методы
поиска неисправностей: метод анализа монтажа; метод измерений; метод замены; метод эквивалентов; метод исключения; метод электрического воздействия; метод механического воздействия; метод электропрогона; метод последовательного контроля; метод половинного деления схемы.

Ремонт радио электронной техники
Неисправности активных и пассивных электрорадиоэлементов.
Пайка электрорадиоэлементов.
Ремонт и регулировка радиоприемных трактов: типовые неисправности и алгоритмы поиска места отказа; основные регулировки в схемах
радиоприемников.
Ремонт и регулировка магнитофонов: типовые неисправности и алгоритмы поиска места отказа; основные регулировки в схемах магнитофонов.
Ремонт и регулировка проигрывателей компакт-дисков: типовые
электромеханические неисправности и алгоритмы поиска места отказа;
основные регулировки в схемах проигрывателей.
Ремонт телевизоров: правила техники безопасности при проведении ремонтных и регулировочных работ; типовые неисправности и алгоритмы поиска места отказа

При техническом диагностировании необходимо также учитывать погрешности измерения ТП, так как при увеличении этих погрешностей, возрастает вероятность ошибки диагностирования.

При диагностировании РЭА решаются три задачи. Задачи первого типа формально следует отнести к технической диагностике. Задачи второго типа – предсказание технического состояния аудиовизуальной техники , в котором она окажется в некоторый будущий момент. Это задачи технического прогнозирования. Решение задач технического прогнозирования имеет место, например, при организации технического обслуживания (ТО) по состоянию (вместо обслуживания по срокам и ресурсам).

Смотрите также:   Новости автоспорта

Непосредственное перенесение методов решения задач технического диагностирования на задачи технического прогнозирования невозможно из-за различия моделей диагностируемых объектов. При диагностировании моделью обычно является описание объекта в текущий момент, в то время как при прогнозировании необходима модель процесса эволюции технических параметров во времени.

К задачам третьего типа относится задача определения технического состояния, в котором находилась аудиовизуальной техники в некоторый момент в прошлом. По аналогии это задачи технической генетики. Такие задачи возникают, например, в связи с расследованием аварий и их причин, когда техническое состояние РЭА в рассматриваемое время отличается от состояния, в котором она была в прошлом.

Эти задачи решаются путем определения возможных или вероятных предысторий, ведущих к настоящему техническому состоянию РЭА. Необходимо отметить, что в большинстве случаев при проведении технического диагностирования решаются задачи первого типа. Однако при необходимости могут решаться задачи и второго, и третьего типа.

Техническое диагностирование бытовой аудиовизуальной техники рекомендуется проводить в соответствии с обобщенным алгоритмом, приведенным на рис. 2.

Рис. 2. Обобщенный алгоритм диагностирования аудиовизуальной техники

Обзор методов диагностики РЭА

Определение части изделия, отказ которой привел к возникновению состояния неработоспособности, называется поиском места отказа (ПМО). Физически отказ РЭА
сопровождается либо прекращением функционирования (явный отказ), либо выходом параметра за пределы допусков (неявный отказ), либо присутствием перемежающихся отказов.
Большую группу методов ПМО составляют так называемые органолептические методы, в основе которых лежат различные (трудно классифицируемые) признаки:
• совокупность параметров полезных и сопутствующих сигналов;
• активные признаки нормальной работы отдельных частей на основе постоянно функционирующих датчиков и контрольных сигнализаторов;
• пассивные признаки, сопровождающие работу системы, например тепловые режимы отдельных изолированных блоков. Другая группа методов ПМО основана на использовании статистических данных по отказам РЭА, отдельных блоков, полученных в результате эксплуатации. На основании проработки статистического материала формируется алгоритм последовательного ПМО. Если проверенный элемент оказывается работоспособным, то приступают к проверке следующего.
Существует множество методов ПМО в бытовой радиоэлектронной аппаратуре, такие как метод внешнего осмотра, метод замены, метод промежуточных измерений.
Метод внешнего осмотра заключается в осмотре монтажа и элементов схемы. В результате внешнего осмотра устанавливается наличие изменений внешнего вида элементов, их перегрева, течи, искрения, подгорания, разрушения и т.д.
Метод замены предусматривает замену отдельных элементов на заведомо исправные, и при восстановления признака нормальной работы делается вывод об отказе замененного элемента.
Методы промежуточных измерений будут описаны в следующем пункте.

При построении алгоритмов (программ) поиска неисправностей различают последовательный, комбинационный и комбинационно-последовательный методы использования диагностической информации.
При последовательном методе информация о техническом состоянии отдельных ФЭ диагностируемой аппаратуры вводится в систему контроля и диагностики (в том числе и в автоматизированные системы контроля) и логически обрабатывается последовательно. При этом программа поиска неисправностей может быть жесткой или гибкой. Жесткой называется программа, при которой выходные параметры ФЭ контролируются в строгой, заранее
определенной последовательности независимо от результатов их контроля. Гибкой называется программа, при использовании которой содержание и последовательности проведения последующих проверок зависят от результатов предыдущей.
При комбинационном методе результаты контроля логически обрабатываются только после накопления информации о всех параметрах диагностируемой РЭА.
Комбинационно-последовательный метод предусматривает последовательную обработку информации, получаемой в результате одновременного контроля нескольких (из всей совокупности) контролируемых параметров диагностируемой аппаратуры.
Выбор того или иного метода обусловлен структурой объекта диагностики и требуемой глубиной поиска неисправностей. Он накладывает определенные требования на принципы построения и структуру системы контроля и диагностики.
Вид алгоритма (программы) поиска неисправностей существенно влияет на эффективность процесса контроля и диагностики. При разработке алгоритма поиска обычно решают две задачи:
— определяют наилучший набор контролируемых параметров;
— получают наилучшую последовательность измерения контролируемых параметров.
Рассмотрим наиболее распространенные способы построения алгоритмов поиска неисправностей в бытовой РЭА.

Поэлементные методы диагностики

Поэлементные методы диагностики применяются в том случае, когда РЭА представляется в виде множественной модели, то есть в виде множества не взаимосвязанных междум собой элементов, каждый из которых может быть проверен отдельно с использованием тестовых или функциональных методов. Поиск отказавшего ФЭ на множественной модели осуществляется путем последовательной их проверки.
Тестовые методы диагностики функциональных элементов (ФЭ) используются наиболее часто при ремонте бытовой РЭА. Они универсальны и легко применимы к любой РЭА, в случае если ФЭ выпаяны (отсоединены) из схемы. При проверке ФЭ без выпайки следует учитывать влияние других функциональных элементов.
Тестовые методы диагностики сложных ФЭ (каскадов, блоков, модулей) реализуются с использованием сложной контрольно-измерительной аппаратуры: измерителей частотных характеристик, измерителей нелинейных искажений, осциллографов и т.п. В этом случае радиомеханик должен иметь высокую квалификацию, иметь знания о правилах эксплуатации контрольно-измерительной аппаратуры, а главное, о правилах оценки полученных результатов проверки.
Функциональные методы диагностики используются также часто, как и тестовые методы. Проверка исправности элементов и компонентов РЭА в режиме их функционирования производится в основном в статических режимах работы и реже — в динамических режимах работы.
В статических режимах работы диагностика ФЭ обычно осуществляется по значениям узловых напряжений. Эти значения указываются, как правило, на принципиальной электрической схеме для каждой конкретной аппаратуры. Используются также карты напряжений и реже карты сопротивлений.
В динамических режимах диагностика ФЭ осуществляется по результатам преобразования рабочих сигналов.
Последовательность применения поэлементных методов диагностики. Главной целью при организации диагностической последовательности проверок ФЭ
является составление последовательности, обладающей минимальной стоимостью ее выполнения. В данном случае ФЭ не однотипные и на проверку каждого из них затрагиваются различные ресурсы (например, время, оборудование), тогда при составлении последовательности проверки следует учитывать стоимость проверки каждого из элементов. Стоимость проверки должна возрастать с ростом номера проверяемого элемента в последовательности:

где Pi — вероятность отказа i -го элемента,
Cj — стоимость проверки j -го элемента,
M — число проверяемых элементов в аппаратуре.
Для рациональной организации последовательности проверки элементов их противоречивые характеристики Pi и Cj сворачивают в один критерий в виде отношений Pi / Ci . Затем упорядочивают элементы в соответствии с этим критерием по его убыванию.

упорядочивают элементы в соответствии с этим критерием по его убыванию.
Следует отметить, что характеристики ФЭ могут изменяться по мере накопления знаний о статистике их отказов и, следовательно, оперативно учитываться при составлении последовательности проверки элементов. Кроме характеристик P и C , ФЭ могут иметь и другие характеристики, которые также могут учитываться в алгоритме проверки элементов. Например, может учитываться имеющаяся в конкретном случае контрольно-измерительная аппаратура, достоверность получаемой с ее помощью информации и т.п.

Метод последовательного функционального анализа

Поиск неисправности методом последовательного функционального анализа является исторически одним из первых. Для построения программы поиска, исходя из назначения РЭА, определяются ее основные функции, выполнение которых позволяет считать, что контролируемая аппаратура исправна. Рассмотрим метод на примере CD проигрывателя. Основная функция CD проигрывателя: воспроизведение звукового стерео сигнала, записанного на CD.
Контроль состояния будет заключаться в контроле выполнения этой функции. Если основная функция не выполняется, то возникает задача поиска неисправности. Для этой цели используется функционально-логическая модель (рис. 3).

Рис. 3. Функционально-логическая модель CD проигрывателя

Контроль осуществляется последовательно от ФЭ, выполняющего основную функцию (9,10), к ФЭ, от которых зависит работа этого элемента. Метод прост и нагляден, требует минимальной информации, однако программа поиска неисправности зацикливается при появлении обратных связей. В данном случае метод не применим, т.к. CD проигрыватель имеет сложную структуру петель ОС.

Метод половинного деления схемы

Метод половинного деления схемы обычно используют для контроля прохождения сигнала в многокаскадных радиоэлектронных устройствах. Он позволяет значительно сократить время поиска места отказа. Суть метода заключается в мысленном делении схемы устройства первоначально на две половины. Далее осуществляется проверка наличия сигнала на выходе каскада, расположенного примерно в середине той половины, в которой имеется неисправность, и т.д., пока не будет обнаружен неисправный каскад. Последовательность проверок в этом случае показана на рис. 4.
Если радиоэлектронное устройство, в котором наблюдается неисправность, имеет, например, 8 каскадов, то первую проверку наличия сигнала проводят на выходе 4-го каскада.
Если при этом сигнал будет отсутствовать, то вторую проверку проводят на выходе 2-го каскада. Если же на выходе 4-го каскада сигнал имеется, а на выходе всего устройства, т.е. на
выходе 8-го каскада, его нет, то вторую проверку проводят на выходе 6-го каскада, и т. д.

Рис. 4. Последовательность проверок при использовании метода
половинного деления схемы
Построение программы поиска неисправности методом «половинного разбиения» рекомендуется использовать для диагностики РЭА с последовательным соединением функциональных элементов.

Метод «время-вероятность»

Этот метод используется для поиска неисправности в РЭА с произвольным соединением ФЭ, различными вероятностями состояний и стоимости проверок. Для реализации способа необходимые исходные данные:
1). Функционально-логическая модель ОД.
2). Таблица состояний с вероятностями различных состояний P(Si) и стоимостями
контроля параметров C(zi) функциональных элементов.
Обычно эффективность способа оценивается средним временем поиска неисправного
ФЭ или средним временем контроля одного параметра.
Функциональная модель ОД и таблица состояний должны быть заданы или составляются до необходимой (заданной) глубины поиска дефектов ti.
Вероятности состояний P(Si) ОД определяются на основании данных об отказах, полученных в процессе эксплуатации аналогичных объектов, а время ti — данных, полученных в процессе контроля параметров.
Если нет статистических данных об отказах, вероятность состояний P(Si) можно рассчитать, используя данные по интенсивности отказов λ0 распространенных элементов и деталей, приводимых в справочниках.

По результатам расчета и его анализа строится графическая схема программы поиска
дефекта.
Порядок составления программы поиска:
1). Анализ структурной и функциональной схемы ОД и составление его функционально-логической модели.
2). Определение P (Si) и i t .
3). Определение для всех элементов функционально-логической модели отношения

и составление последовательности поиска.
4). Составление программы поиска.
Метод обладает минимальным средним временем (стоимостью) поиска любого неисправного ФЭ для данной модели, но может быть не применим ввиду отсутствия статистических данных на данный ОД

Смотрите также:   Информация о системах активной стабилизации при резком ускорении и программе динамической устойчивости автомобиля (ESP). Работа ESC, DSC и аналогичных систем контроля устойчивости Active Stability Control

Инженерный метод

Методика построения программы поиска неисправности инженерным методом основана на вычислении достаточно простыми методами функций предпочтения. Исходными данными являются функционально-логическая модель (рис. 3) и таблица состояний (табл.1).
Равенство некоторого ij-го матричного элемента нулю (состояние элемента описывается символом 0 или 1) означает,
что отказ i-го ФЭ влияет на выходной параметр j-го ФЭ, т.е., контролируя параметр zj, можно
определить состояние i-го ФЭ.
Таким образом, чем больше нулей в строке Zj матрицы состояний, тем большую информацию несет данный параметр о состоянии диагностируемого объекта.
В качестве функции предпочтения при решении задачи поиска неисправности принимают функцию вида:

Функции предпочтения обозначает разность количества нулей и единиц в i-ой строке матрицы состояний.
Проверку начинают и ведут по строкам с минимальными значениями функции Wi . Таким образом, определяется последовательность контролируемых точек и составляется схема поиска неисправности.
Функция Wi имеет минимальное значение в строке Z2: 1 W2 = . Выбираем первую
контрольную точку Z2. Если сигнал в точке Z2 в норме, то это говорит об исправности блоков
1,2,4,5,7,8 (рис.5) и возможной неисправности блоков 3, или 6, или 9, или 10, или 11, или 12,
или 13. Поэтому составляется матрица состояний S3, S6, S9, S10, S11, S12 и S13, для которых в
точке Z2 была получена «1» и определяется Wi (табл. 2).
Из таблицы 2 видно, что минимальное значение Wi принимает в строках Z3, Z6 и Z11.
Выбираем вторую контрольную точку Z3. Если сигнал в точке Z3 равен «1», то это говорит об
исправности блоков 3,12,13 и возможной неисправности блоков 6, или 9, или 10, или 11.
Далее составляется матрица для состояний Z6, Z9, Z10 и Z11, для которых в точке Z3 была получена «1′ и определяется W i (табл..3).
Из таблицы 3 видно, что минимальное значение Wi принимает в строках Z9 и Z10. Выбираем вторую контрольную точку Z9. Если сигнал в точке Z9 равен «1», то это говорит об исправности блоков 6,9 и возможной неисправности блоков 10, или 11.
Далее составляется матрица состояний для Z10 и Z11, для которых в точке Z9 была получена «1′ и определяется W i (табл. 4).
Из табл. 4 видно, что контрольная точка Z11 дает однозначный ответ. Если сигнал равен «0», то неисправен блок 11, а если сигнал равен «1», то неисправен блок 10.
Аналогичным путем осуществляется выбор последующих контрольных точек, если сигнал в проверяемой точке Z2, Z3 равен «0» (рис. 5).
Схема поиска неисправности, построенная по данной программе, приведена на рис. 6.

Рис. 6. Схема поиска неисправности инженерным методом

Метод на основе иерархического принципа

Построение алгоритмов диагностирования по иерархическому принципу целесообразно использовать для РЭА со встроенными устройствами контроля. При данном способе N первичных ФЭ диагностируемого объекта разбиваются на k групп по N1 элементов в каждой группе.
Выходные параметры первичных ФЭ объединяются в одной точке с измерительным устройством и индикатором неисправности. Таких индикаторов будет k штук. Последние еще разбиваются на r групп по N2 штук. Выходы N2 индикаторов снова объединяются в одной точке с одним индикатором. Таких индикаторов будет r штук и т д. В результате придем к одному индикатору неисправности.

Рис. 7. Схема поиска неисправностей по иерархическому принципу

В такой системе при выходе из строя ФЭ объекта диагностики индикатор покажет неисправность диагностируемого объекта. Для обнаружения неисправного ФЭ просматриваются показания индикаторов первой ступени и при, обнаружении индикатора, указывающего на неисправность, просматриваются индикаторы следующей ступени, соединенные только с этим индикатором.
Проверки продолжаются в указанной последовательности до тех пор, пока не будет обнаружен неисправный первичный ФЭ (рис. 7). Поиск неисправного первичного ФЭ по приведенной схеме позволяет значительно сократить время

2 2. Метод внешних проявлений

Метод основан на том, что по характеру отличия выходного параметра принтера y* от нормы выбирают из всего множества элементов X подмножество X*, в котором могут находиться дефекты, приводящие к данному внешнему проявлению Х*⊂ Х / . Иными словами, подмножество Х* соответствует тому участку принтера, где наиболее вероятен дефектный элемент.
В дальнейшем, используя другие методы, производят суждение области поиска вплоть до точного определения дефекта.
В частном случае область Х* / может состоять из одного элемента.
Это относиться к типовым дефектам, когда благодаря практическому опыту можно безошибочно обнаружить дефект по его внешнему проявлению (рис. 8).

3).Формулирование физической сущности дефекта.
Эта операция производится на основе имеющейся информации о физических процессах, происходящих в принтере. Не следует вместо формулирования физической сущности
дефекта сразу же пытаться указать сам дефект: некоторые дефекты очень трудно представить по их внешним проявлениям, а поэтому можно легко ошибиться.
4).Составление заключения о возможных причинах дефекта.
В зависимости от типа внешнего проявления дефекта выбор области поиска дефекта
производится по-разному. Например, отсутствует какой-либо параметр. Выбирается подмножество Х*, куда должны входить: элементы, выход из строя которых в других принтерах
уже приводил к подобным внешним проявлениям; элементы, участвующие в формировании
параметра, который оказался дефектным; элементы, непосредственно не участвующие в
формировании дефектного параметра, но электрически связанные с вышеуказанными элементами.
Метод анализа качества изображения помогает достаточно точно определить место
неисправности, но он весьма трудоемок, затратен по времени. Все сказанное в первую очередь относится к одиночным дефектам.

Метод измерений

Метод измерений применяется в том случае, когда уже существует заключение о возможных причинах дефекта – определена область нахождения. Работа каждого элемента в принтере может быть оценена определенными электрическими характеристиками.
Суть метода измерений заключается в том, чтобы с помощью измерительных приборов найти противоречия в работе устройства и на основе этих противоречий отыскать дефектные элементы. При поиске дефекта результаты измерений сравниваются с данными, приведенными на принципиальных схемах, в описаниях или же полученными с помощью измерения аналогичных параметров в исправном РЭА. Метод измерения не всегда бывает таким производительным, как, например, метод внешних проявлений. Не всегда имеются принципиальные схемы или аналогичная исправная РЭА. Однако этот метод всегда приносит успех и особенно эффективен при отыскании сложных дефектов.

Метод исключения

Метод применяют на средних и поздних этапах поиска неисправности. Основными способами, используемыми при данном методе, являются поочередное исключение блоков. Например, исключаем блок фьюзера. Для этого останавливаем принтер во время печати, пока лист не дошел до фьюзера, и сравниваем отпечаток с предыдущим. Если проблемы остались, то проблема в другом блоке. Этот метод диагностики прост, не требует дополнительного оборудования, позволяет довольно быстро определить неисправный узел.

Пошаговый метод поиска неисправностей

Для осуществления процесса поиска неисправности определяются основные функции аппаратуры, выполнение которых позволяет считать, что контролируемая аппаратура исправна. Контроль технического состояния будет заключаться в контроле выполнения этих функций. Если какая-либо основная функция не выполняется, то возникает задача локализации неисправности. Для этой цели используются дерево поиска неисправностей. Допустим, что неисправность возникла в блоке подачи бумаги принтера.
Процедура:

Устранить застревание бумаги, запустить печать.
Вращается ли ролик подачи?
Да Нет
Проверить работу соленоида подачи.
Да Нет
Проверить сигнал запуска соленоида подачи.
Правильно ли поднимается напряжение между
Р/J406-10 и СОМ?
Да Нет
Заменить главную печатную плату.
Проверить работу соленоида. Если он не включается, то заменить его.
Проверить натяжение пружины приемной шестерни.
Если натяжение слабое, то заменить пружину.
Очистить ролик подачи и прижимной ролик.
Проверить их на износ и старение.
Да Нет
Проверить цепь +5В.
Заменить ролик подачи.
Пошаговый метод поиска неисправностей очень эффективен, но необходимо иметь
техническую документацию, что не всегда возможно.

Метод замены

Метод замены применяют в двух случаях: на средних этапах обнаружения дефекта – для сужения найденной другими методами области Х /
; на поздних этапах – для нахождения дефектного элемента. Суть метода заключается в следующем. Если неисправные блоки или элементы заменить на аналогичные заведомо исправные, и при этом проявление дефекта исчезает, то можно говорить о нахождении неисправности. Особую сложность при ремонте РЭА представляют блоки, и элементы с непостоянным проявлением неисправности, а этот метод позволяет безошибочно определить неисправность. Однако не на все аппараты можно найти блок на временную подмену.

Метод системного анализа

Метод поиска неисправностей, основанный на логическом (системном) подходе, состоит из 6 этапов. Первый этап – выявление признаков неисправности, т.е. определение его внештатного функционирования. Второй этап – углубленный анализ признака неисправности. Дополнительная информация о признаках неисправности может быть получена путем манипулирования органами настройки и анализа отклика аппаратуры на эти манипуляции.
Третий этап – составление перечня возможных неисправных функций. Это этап анализа, основанный на исследовании сведений, полученных на первом и втором этапах, а также знаниях о функциональных узлах и связях между ними. Четвертый этап – локализация неисправной функции. При выборе потенциально неисправной функции необходимо учитывать сложность выполнения проверки и возможность исключения из рассмотрения одного или нескольких других предположений в результате данной проверки.
Пятый этап – это локализация неисправности в схеме. В результате этого этапа локализируется неисправность в конкретной схеме функционального узла.
Шестой этап – локализация неисправного компонента. Логика выбора потенциально неисправного узла иллюстрируется рисунком 9.

Рис. 9. Логика выбора потенциально неисправного узла

Табличный метод

Помимо всех перечисленных методов поиска неисправностей в РЭА существуют таблицы типовых неисправностей конкретного типа РЭА и действий по их устранению. Этот метод направлен главным образом на пользователей, позволяет достаточно быстро определить вид неисправности и устранить ее. Ниже приведен пример такой таблицы, применяемой для поиска и устранения неисправностей, возникших в работе лазерного принтера HP
LaserJet 4200.

Во время работы принтера производится индикация режимов его работы. Для этого используются светодиоды на передней панели принтера или ЖК-индикатор. Использование показаний индикаторов поясняется таблицей 8.

Оцените статью
AutoPerfection